Section 6-3 Ionic Bonding

Ionic Compound

Composed of positive and negative ions that are combined so that the numbers of positive and negative charges are equal

Formula Unit

The simplest collection of atoms from which an ionic compound's formula can be established

A formula unit will be based on the charges of the specific ions. To make calcium fluoride, Ca^{2*} with F^{-} must become CaF_{2^*} .

Crystal Lattice

The orderly arrangement of ions in an ionic crystal.

Lattice energy

The energy released when one mole of an ionic crystalline compound is formed from gaseous ions

Formation of an Ionic Bond

Crystal Structure of Sodium Chloride

Ionic Compound Properties

- Properties of ionic compounds are based on the strong attractive forces between positive and negative ions. The lattice arrangement and bond strength can depend on ion size and charge difference.
- · Ionic compounds tend to have very high melting and boiling points
- lonic compounds tend to be very hard but brittle
 Many ionic compounds dissolve in water

 lons separate and become surrounded by water
 Attraction of water must overcome attraction between in
- Attraction of water must overcome attraction between ions
 Molten ionic compounds are electrical conductors because ions moving freely carry an electrical current
- Dissolving ionic compounds in water will make an electrical conductor by allowing ions to move freely
- Lewis Structures involve charges but not bonds

$$\cdot \mathsf{Ca}^{*} + : \breve{F} : + : \breve{F} : \longrightarrow \mathsf{Ca}^{2+} + \left[: \breve{F} : \right]^{-} + \left[: \breve{F} : \right]^{-}$$

Polyatomic Ions

Polyatomic Ion

A charged group of covalently bonded atoms. The charge is due to either an excess or shortage of electrons.

