Section 3-3 Atoms

Subatomic Particles

	Symbol	Charge	Mass	
Electron	e ⁻	-1	0	
Proton	p+	+1	1	
Neutron	n ^o	0	1	

Section 3-3 Atoms

Reading a Periodic Table

Section 3-3 Atoms and Isotopes

Basics of Atoms

- A neutral atom has the same number of electrons as it has protons.
- Atoms of the same element can have different masses due to different numbers of neutrons.
- 3) Elements with different masses are called isotopes. **Nuclide** is a term for an isotope.

Section 3-3 Atoms and Isotopes

Designating Isotopes

Mass Number = Protons + Neutrons

→ Mass Number - Protons = Neutrons

Example: an isotope of uranium has a mass of 235 and an atomic number of 92. How many neutrons?

$$235 - 92 = 143$$
 mass protons neutrons

2

Section 3-3 Atoms and Isotopes

Designating Isotopes

There are two common ways to present isotopes

Example: an isotope of uranium has a mass of 235 and an atomic number of 92.

Nuclear Symbol

Hyphen Notation

 $\begin{array}{ccc} \text{mass} \rightarrow & 235 \\ \text{Z} \rightarrow & 92 \end{array}$

Uranium-235

Section 3-3 Atoms and Isotopes

How to remember Nuclear Symbol

Correct 235 U 92 Incorrect 92 235

The nuclear symbol should look like an easy subtraction problem to calculate neutrons.

92 143 U

0

Section 3-3 Atoms and Isotopes

Isotopes of hydrogen

Ice cubes of D₂O in liquid H₂O will sink!!

Water composed of deuterium hydrogen is

often labeled D₂O rather than H₂O. Because each molecule is heavier but still the same

Heavy Water

size, D₂O is more dense.

Section 3-3 Atoms and Isotopes

Section 3-3 Atomic Mass Unit

Relative Atomic Mass – a separate unit of measurement is used for mass of individual atoms.

amu - Atomic Mass Unit

 $1 \text{ amu} = 1.660540 \text{ x } 10^{-27} \text{ kg}$

The amu is based off 1/12th the mass of Carbon-12

Section 3-3 Average Atomic Mass

Periodic Table Masses

This is not the same as the Mass Number!!

Masses on the periodic table are weighted averages based on the percentage of each nuclide found in nature. (Just like GPA)

Mass of Copper

 Nuclide Cu-63
 % Occurring 69.15%
 Mass (amu) 62.93
 % x Mass 43.52

 Cu-65
 30.85%
 64.93
 20.03

 Average Mass
 Average Mass

Section 3-3 Counting Atoms

Dry air has 0.002% neon.

Each breath has 5 x 10¹⁷ neon atoms. That is 500 000 000 000 000 000 atoms!!

In chemistry, we frequently work with huge quantities of atoms. Is this an easy way to count atoms?

Section 3-3 Counting Atoms

The Mole (Mol for short)

The mole is defined as the quantity of atoms in a sample of exactly 12 g of pure carbon-12.

This count is called **Avogadro's Number**... 602,213,670,000,000,000,000,000

 \rightarrow 6.0221367 x 10²³

To make things easy to remember...

1 mole = 6.02×10^{23}

12

Section 3-3 Counting Atoms

The Mole is a Quantity

1 dozen = 12

How many donuts in 3.5 dozen?

3.5 dozen donuts
$$\left[\frac{12}{1 \text{ dozen}}\right]$$
 = 42 donuts

1 mole = 6.02×10^{23}

How many donuts in 3.5 moles?

3.5 mole donuts
$$\left(\frac{6.02 \times 10^{23}}{1 \text{ mole}}\right) = 2.1 \times 10^{24} \text{ donuts}$$

13

15

Section 3-3 Counting Atoms

Converting Mass / Moles / Atoms:

Mass/Moles

"Mass to Moles or Moles to Mass... Use Molar Mass"

Moles/Atoms

1 mole atoms = 6.02×10^{23} atoms

14

Section 3-3 Counting Atoms

Using Molar Mass

The Molar Mass of an element is equal to its atomic mass

Li =
$$6.94 \text{ g/mol} \rightarrow 1 \text{ mole of lithium atoms} = 6.94 \text{ g}$$

How many grams are in 2.0 moles?

$$2.0 \, \underline{\text{moltr}} \left[\frac{6.94 \, \text{g Li}}{1 \, \underline{\text{moltr}}} \right] = 14 \, \underline{\text{g Li}}$$

Section 3-3 Counting Atoms

Using Avogadro's Number

The Molar Mass of an element is equal to its atomic mass

1 mole =
$$6.02 \times 10^{23}$$

How many atoms are in 2.0 moles of Li?

2.0 mote Li
$$\left[\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mote Li}} \right] = 1.2 \times 10^{24} \text{ atoms Li}$$

16

Section 3-3 Counting Atoms

Atoms to Mass.... Or Mass to Atoms

This is a two step process

How many grams are in 9.03 x 10²³ atoms of oxygen?

$$9.03 \times 10^{25} \text{ atoms O} \left[\frac{1 \text{ mete}}{6.02 \times 10^{23} \text{ atoms}} \right] \left[\frac{16.0 \text{ g}}{\text{pot}} \right] = 24.0 \text{ g O}$$

How many atoms are in 7.0 grams of N?

7.0 g N
$$\left[\frac{\text{mol}}{14.0 \text{ g}}\right] \left[\frac{6.02 \times 10^{23} \text{ atoms}}{1 \text{ mole}}\right] = 3.0 \times 10^{23} \text{ atoms N}$$

17