

Properties of Acids

Acids typically...

- · Have a sour taste
- · Change the color of acid-base indicators
- ٠ Can react with active metals to release hydrogen gas

4

- · React with bases to produce water and a salt
- · Are electrolytes

- Hydroiodic Acid
- Hydrobromic Acid
- Hydrochloric Acid HCI
- Sulfuric Acid H_2SO_4
- Nitric Acid HNO₃

HBr

5

Acids and Bases

Bases – Formation of the Hydroxide Ion

Hydroxide – OH⁻

- Bases will form the OH⁻ ion in water.
- Most bases are metal hydroxides
- Some molecules ionize to form bases
- Basic solutions are sometimes called alkaline solutions

 $NaOH(g) \xrightarrow{H_2O} Na^+(aq) + OH^-(aq)$

 $\mathsf{H}_2\mathsf{O}(I) + \mathsf{NH}_3(g) \longleftrightarrow \mathsf{NH}_4^+(aq) + \mathsf{OH}^-(aq)$

Properties of Bases

Bases typically...

- Have a bitter taste
- Change the color of acid-base indicators
- Feel slippery (When dilute solutions)
- · React with acids to produce water and a salt

8

Are electrolytes

Strong	Bases	
Strong bases will dis	sociate completely.	
Six Strong Bases		
Lithium Hydroxide	LiOH	
Sodium Hydroxide	NaOH	
 Potassium Hydroxide 	КОН	
Calcium Hydroxide	Ca(OH) ₂	
Strontium Hydroxide	Sr(OH) ₂	
Barium Hydroxide	Ba(OH) ₂	9

Weak Bases •Poorly soluble weak bases will produce little OH-•Soluble weak bases will react partially •They are weak electrolytes $Cu^{2+}(aq) + 2 OH^{-}(aq) \xrightarrow{H_2O} Cu(OH)_2(s)$ Low solubility $H_2O(l) + NH_3(g) \longleftrightarrow NH_4^+(aq) + OH^-(aq)$ Majority of reaction 10

14		l tam	mil Value
<u>Item</u>	pri value	ntem	pri value
Hydrochioric acid	0.1	Rainwater	5.2-5.8
Sulfuric acid	0.3	Potatoes	5.6-6.0
Stomach Acid	1 – 3	Normal rain	5.7
Lime	1.8 – 2	Milk	6.3-6.6
Soft drinks	2.0 - 4.0	Saliva	6.5-7.5
Lemons	2.2 - 2.4	Drinking water	6.5 – 8
Vinegar	2.4 - 3.4	Distilled water	7
Apple juice	2.9 - 3.3	Pure water	7.0
Grapefruit juice	3 – 3.3	Blood	7.3-7.5
Orange juice	3 – 4	Sea water	7.4 - 8.5
Cherries	3.2-4.0	Eggs	7.6-8.0
Grapes	3.5 - 4.5	Baking soda	8
Tomatoes	4.0-4.4	Borax	9.2
Sour milk	4.3 - 4.5	Milk of magnesia	10.5
Bananas	4.5-5.7	Ammonia water	11.6
White bread	5-6	Limewater	12.4
Acid rain	5.2	Soda lve	14

