Refraction of Light

Refraction— is the bending of the path of a light wave as it passes from one material into another material.

Refraction occurs at the boundary and is caused by a change in the speed of the light wave upon crossing the boundary.

When the angle of incidence is 0° then refraction will

Index of Refraction

Index of Refraction (n)- measure of speed change of light from traveling through the medium

$$n = \frac{c}{v}$$

c = speed of light in vacuum

v = speed of light in medium

Medium	n
Vacuum	1.00
Air	1.0003
Water	1.33
Quartz	1.54
Diamond	2.42

Example Problem

The incident angle is 52° for a ray of light in air approaching water.

Determine the angle of refraction.

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$\frac{n_1 \sin \theta_1}{n_2} = \sin \theta_2$$

$$\frac{1.0003 \sin 52^{\circ}}{1.33} = 0.59$$

$$\theta_2 = \sin^{-1}(0.59) = 36.35^\circ$$

* Set calculator mode to degrees!!

Total Internal Reflection

Critical Angle - Angle where refracted ray lies on boundary of mediums

$$\sin \theta_c = \frac{n_r}{n_i}$$

 n_r = refractive medium

n_i = incident medium

1

Convex Lenses

- thicker in the middle than the edges
- converges parallel light rays to a focal point
- focal length factors
 - shape of the lens
 - index of refraction of the material

Rules for Convex Lens Ray Diagrams

- Parallel rays parallel refract through the lens and travel through the opposite focal point.
- Rays traveling through the focal point before the lens will refract through the lens and travel parallel.
- Rays passing through the center of the lens will continue in the same direction that it entered the lens.
- Objects in front of F will have image converge on the same side of the lens to form a virtual image. (Use dotted lines)

Lens Equation and Magnification

This image size and location can be found mathematically as well

• Lens Equation :

$$\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}$$

• Magnification:

$$m = \frac{h_i}{h_o} = \frac{-d_i}{d_o}$$

Sign Conventions for Lenses

Used in the lens and magnification equations:

+ for convex lenses (converging lens)

- for concave lenses (diverging lens)

+ if located on the opposite side (real image)

d_i - if located on the object's side (virtual image)

+ if upright image (also virtual)

- if inverted image (also real)

Object Locations (Convex Lens)

- Between F and 2F → a larger inverted image found past 2F on other side
- At 2F → same size, inverted image that is at 2F on the other side
- Past $2F \rightarrow$ smaller inverted image found between F and 2F on the other side
- Before F → larger erect virtual image on same side

Concave Lenses

- thinner in the middle than the edges
- diverges parallel light rays from the focal point
- creates virtual image on object's side of lens

Rules for Concave Lens Ray Diagrams

- Parallel rays parallel refract through the lens and travel in line with the focal point of the same side.
- Rays traveling towards the focal point after the lens will refract through the lens and travel parallel.
- Rays passing through the center of the lens will continue in the same direction that it entered the lens.
- Sight lines are drawn on the object's side of the lens for the first two cases. They intersect at the virtual image.

19

Spherical Lens Defects

Spherical Aberration – inability to focus all parallel rays to a focal point

- Greatest effect is at edges
- lenses are often made aspherical

Chromatic Aberration – light can be slightly dispersed into different colors

- Greatest effect at edges
- Always present with single lenses
- Reduced by achromatic lens, a system of two or more lenses

. .

Effects of Lens Size

- A larger lens will collect more light → brighter image
- Covering part of the lens (masking) → dimmer image
- Any part of the lens can create a complete image
- The lens size drawn in a ray diagram is meaningless

Eyeball Optics

Retina

- -Image from light is focused on surface
- Absorbs light and send to brain

Cornea

- Most of focusing
- Air/cornea has greater difference in refractive indices

Eyeball Optics

Lens

- Used for fine focus of near/far objects
- Muscles around lens contract/relax to change shape
 - ullet Change in shape ullet change in f
- Contracts for short f, close objects
- Relaxes for long f, far objects

Nearsightedness (Myopia)

- F is too short
- Image is in front of retina
- Fixed by using a concave lens

Farsightedness (Hyperopia)

- F is too long
- Image is formed past the retina
- Common in older people as lens becomes more rigid
- Fixed by using a convex lens

24

Refracting Telescope

Objective Lens

- Collects light
- Focused as inverted, real image at focal point

Eyepiece

- placed so objective image is between the lens and the eyepiece focal point
- Achromatic lenses are common for eyepieces
- The final image is greatly magnified and inverted

25

Binoculars

- -Similar to telescope
- -Uses a pair of prisms on each side

Prism Advantages

- 1. Uses total internal reflection to invert image
- 2. Extends light path inside
- 3. Allows each objective lens to be farther apart for a more "3-D" view, more depth

. . .

Camera

- Light enters achromatic lens (acts as convex lens)
- When shutter closed, mirror reflects light through prism to invert and redirect light to viewfinder
- When shutter-release pressed, mirror raises, and light forms an image on the film

27

Microscope

- Object between f and 2f of objective lens
- Real image from objective is inverted and larger
- The real image is located between the eyepiece lens and the eyepiece focal point
- Eyepiece makes a larger, upright, virtual image
- Viewer sees an image that is larger and inverted

28

