

Common Temperature Scales

Celsius – related to Centigrade (100 degree)

0°C - water freezes

100°C - water boils

Fahrenheit – used in USA and Belize

32°F – water freezes

212°F - water boils

To make the degree symbol ° type Alt + 0176

Absolute Temperature Scales

Kelvin – related to Celsius, starts at "absolute 0" as lowest impossible value to reach.

OK – all motion stops

273.15K - water freezes

DO NOT USE ° SYMBOL!

Rankine – the "Fahrenheit version of Kelvin"

0°R – Absolute lowest Temp

459.67°R - water freezes

Temperature Conversion

°C to °F

F = 1.8C + 32

°F to °C

 $C = \frac{\left(F - 32\right)}{1.8}$

°C to K

K = C + 273.15

Thermal Energy

- All matter contains thermal energy. This is the total internal energy that results in the temperature of the substance
- A giant iceberg can have more thermal energy than a hot coal even if it is much colder.
- Heat is thermal energy in transit. A substance does not contain heat.

.

Heat Energy

- Heat and Temperature are not the same!!
- Cold is the absence of heat, not an energy
 Same concept as light/dark
- Cold "can't come in", heat flows out
 – Heat flows from High Temp → Low Temp

Q = Heat

• Heat can be read in units of Joules (J) or calories.

calorie (cal) – energy to raise 1g of water by 1°C1 calorie = 4.184 Joules

Calorie (kcal) – energy to raise 1kg of water by 1°C. This is used in food measurement and can be called a kilogram calorie. (notice this one uses a capitol "C")

- 1 Calorie = 1000 calories
- 1 Calorie = 4.184 kJ

10

Adding Heat

Adding heat to an object will either:

- 1. Raise the object's temperature
- 2. Cause a change in state (solid→liquid→gas)
 - This occurs at a constant temperature!

11

Temp and Heat Flow

High Temperature \rightarrow Particles move fast

Low Temperature \rightarrow Particles move slow

When a hot system meets a cold system...

Hot system transfers heat until even temp.

Thermal Equilibrium – Objects have equal temp, average KE, and energy flow rate

Heat Transfer

$$Q = m C_p (T_f - T_o)$$

Q - Heat

m – mass

T – temperature in Kelvin

C_p – specific heat

$$\Delta T = (T_f - T_0)$$

Way to remember: "m c delta T"

Specific Heat

- The amount of energy needed to raise one gram of a substance one degree Celsius.
- Units are [J/kg·K]
- Higher values → "stores" a lot of energy, takes large energy change to heat or cool
- Think of this as the "inertia" of thermal energy

4	,-	
	Э	

Table 12-1						
Specific Heat of Common Substances						
Material	Specific Heat (J/kg·K)	Material	Specific Heat (J/kg·K)			
Aluminum	897	Lead	130			
Brass	376	Methanol	2450			
Carbon	710	Silver	235			
Copper	385	Steam	2020			
Glass	840	Water	4180			
Ice	2060	Zinc	388			
Iron	450	l				

17

3 Types of Heat Transfer

- Conduction through matter by "touching"
 hot metal burns hand
- Convection through fluid motion (gas/liquid)
 Fan cools you off (you heat air)
- Radiation electromagnetic radiation through space, no matter needed
 - Sunlight melts snow

17

Conduction

- · Heat travels through solids that conduct heat
- Conductor a substance that conducts heat very well
 Copper, iron, gold, <u>diamond</u>, silver, many metals
- Insulator a substance that conducts heat poorly
 Wood, Styrofoam, Air, Wool, Concrete

Convection

- Convection currents occur due to temperature differences causing density differences.
 - Hot air rises and is replaced by cooler air
 - Warm water rises, cool water sinks
- A faster current will cause faster heat transfer

19

Radiation

- Transfer of electromagnetic radiation
 - This does not use matter to travel (think of light)
 - This is how we get energy from the Sun!
- All matter emits radiant energy. The frequency of radiation depends on temperature.
 - Room temperature objects emit infrared radiation.
 - Very hot objects emit visible light

20

Phase Changes

Phase changes occur at constant temperature

Heat of Fusion (H_f) – energy required to melt a solid $Q = m H_f$

Heat of Vaporization (H_v) – energy required to vaporize a liquid

 $Q = m H_v$

Units are [J/kg]

Table 12-2					
Heats of Fusion and Vaporization of Common Substances					
Material	Heat of Fusion <i>H</i> _f (J/kg)	Heat of Vaporization $H_{_{ m V}}$ (J/kg)			
Copper	2.05×10 ⁵	5.07×10 ⁶			
Mercury	1.15×10 ⁴	2.72×10 ⁵			
Gold	6.30×10 ⁴	1.64×10 ⁶			
Methanol	1.09×10 ⁵	8.78×10 ⁵			
Iron	2.66×10 ⁵	6.29×10 ⁶			
Silver	1.04×10 ⁵	2.36×10 ⁶			
Lead	2.04×10 ⁴	8.64×10 ⁵			
Water (ice)	3.34×10 ⁵	2.26×10 ⁶			

Phase Changes Melting Solid Liquid Freezing Liquid Solid • Evaporation Liquid Gas Condensation Liquid Sublimation Solid Gas Deposition Solid Gas Triple Point - All three states of matter exist at same time Critical Point - Only gas exists at temperatures past this point

Thermal Expansion

• Each substance has a unique coefficient for thermal expansion.

 α (alpha) is used for linear expansion.

 β (beta) is used for linear expansion.

Coefficients of Thermal Expansion at 20°C					
Material	Coefficient of Linear Expansion, α (°C) ⁻¹	Coefficient of Volume Expansion β (°C) ⁻¹			
Solids					
Aluminum	25×10 ⁻⁶	75×10 ⁻⁶			
Brass	19×10 ⁻⁶	56×10 ⁻⁶			
Concrete	12×10 ⁻⁶	36×10 ⁻⁶			
Copper	17×10 ⁻⁶	48×10 ⁻⁶			
Glass (soft)	9×10 ⁻⁶	27×10 ⁻⁶			
Glass (ovenproof)	3×10 ⁻⁶	9×10 ⁻⁶			
Iron, steel	12×10 ⁻⁶	35×10 ⁻⁶			
Platinum	9×10 ⁻⁶	27×10 ⁻⁶			
Liquids					
Gasoline		950×10 ⁻⁶			
Mercury		180×10 ⁻⁶			
Methanol		1100×10 ⁻⁶			
Water		210×10 ⁻⁶			

Linear Expansion

The change in length of a material is proportional to the original length and the change in temperature

$$\Delta L = \alpha L_i \Delta T$$

 α = coeff of linear expansion

 ΔT = change in temperature

 ΔL = change in length

 L_i = original length

32

Volume Expansion

$$\Delta V = \beta V_i \Delta T$$

 β = coeff of volume expansion

 ΔT = change in temperature

 ΔV = change in volume

 V_i = original volume

Water-Ice Expansion

Liquid water (dense)

Liquid water (dense)

Liquid water (dense)

Water Density

The most dense water always sinks. Deep lakes and oceans will have a constant temperature of 4°C year round. This makes a safe and consistent habitat for many fish.

